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Abstract

We consider a linear univariate rational expectations model, with
a predetermined variable, and study existence and stability of solu-
tions driven by an extraneous finite-state Markov process. We show
that when the model is indeterminate there exists a new class of k-
state dependent sunspot equilibria in addition to the k-state sunspot
equilibria (k-SSEs) already known to exist in part of the indetermi-
nacy region. The new type of equilibria, which we call ergodic k-SSEs,
are driven by a finite-state sunspot but can have an infinite range of
values even in the nonstochastic model. Stability under economet-
ric learning is analyzed using representations that nest both types of
equilibria. 2-SSEs and ergodic 2-SSEs are learnable for parameters in
proper subsets of the regions of their existence. Our results extend to
models with intrinsic random shocks.
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1 Introduction

The existence of “self-fulfilling” solutions, driven by extraneous stochastic
processes known as “sunspots,” was initially demonstrated by (Shell 1977),
(Azariadis 1981), (Cass and Shell 1983), (Azariadis and Guesnerie 1986) and
(Guesnerie 1986) in simple stylized models, such as the Overlapping Gen-
erations model of money. More recently the existence of such solutions in
linearized versions of Real Business Cycle models with distortions has empha-
sized the possibility that sunspot equilibria may provide a way of accounting
for macroeconomic fluctuations. For the recent literature see (Guesnerie and
Woodford 1992), (Farmer 1999) and (Benhabib and Farmer 1999).

A question that has arisen in this literature concerns the attainabil-
ity of sunspot equilibria. That sunspot solutions could be stable under
adaptive learning was demonstrated for the basic Overlapping Generations
model by (Woodford 1990), and conditions for local stability under adaptive
learning were provided in (Evans and Honkapohja 1994b) and (Evans and
Honkapohja 2003) for one-step forward looking univariate nonlinear mod-
els.! The solutions considered in these papers take the form of a finite-state
Markov process, a type of solution that is prominent in the theoretical lit-
erature and described at length, for example, in (Chiappori, Geoffard, and
Guesnerie 1992).

For linear models with predetermined variables, (Evans and Honkapohja
1994a) considered the stability under learning of sunspot solutions taking an
autoregressive-moving average form, but they did not examine finite-state
Markov solutions. Indeed, until the work of (Dvila 1997), it was not generally
recognized that finite-state Markov sunspot solutions could exist in models
with predetermined variables.? (Dvila 1997) and (Dvila and Guesnerie 2001)
give conditions for existence of finite-state Markov solutions in both linear
and nonlinear nonstochastic models with memory.

The current paper analyzes stability under learning of finite-state Markov
equilibria in linear models with predetermined variables. We begin with
nonstochastic models and the equilibria studied by Davila. In the process
of obtaining our results we uncover another class of solutions that has not

!(Desgranges and Negroni 2001) have obtained conditions for eductive stability of two-
state Markov stationary sunspot equilibria in an overlapping generations model.

2An exception is (Howitt and McAfee 1992). However this model relied on a nonlinear
model that produced multiple steady states. (Evans, Honkapohja, and Romer 1998) also
relied on finite-state Markov sunspot equilibria near distinct steady states.



previously been noted. These solutions, like the finite-state Markov solutions,
depend on an extraneous k-state Markov process, but do not take on a finite
number of values. We characterize these solutions and also analyze their
stability under adaptive learning.

To analyze the stability under learning of these sunspot equilibria, we be-
gin by showing that each of these rational expectations equilibria (REE) can
be obtained as a solution to a member of a certain class of linear difference
equations: we call these equations representations of the equilibria. Repre-
sentations are most easily characterized as fixed points of a map T, which
takes agents’ perceived law of motion to the corresponding actual law of mo-
tion. This T-map, and hence the corresponding fixed points, will depend on
the transition probabilities 7 of the associated Markov process.

It turns out that even if the model’s parameters are such that k-SSEs
exist, the corresponding transition probabilities 7 must satisfy certain con-
straints. On the other hand, whether or not 7 satisfies these conditions, a
T-map is still defined, and to every non-trivial fixed point of this T-map cor-
responds at least one associated REE that depends explicitly on the Markov
process. These observations lead us to the following definition. We call any
solution to our representations k-state dependant sunspot equilibria and, an-
ticipating their time-series properties, we define ergodic k-SSFEs to be those
k-state dependant sunspot equilibria which are not k-SSEs.

To obtain specific results about the existence of ergodic k-SSEs and to
analyze the stability under learning of k-SSEs and ergodic k-SSEs, we con-
sider in detail the case k = 2. We find that ergodic 2-SSEs exist whenever
the model is indeterminate and the associated roots are real, whereas 2-SSEs
exist in only part of this region. If agents use the functional form of these
representations as their perceived law of motion, i.e. their regression model,
then provided the parameters are appropriately restricted to be in certain
proper subsets of the regions of existence, agents can learn the true form
of the representation. Numerical simulations illustrate convergence under
learning for both types of equilibria.

To keep close to the literature, and for presentational clarity, our results
are initially presented for nonstochastic models. In applied work stochastic
linear or linearized models are more typical. We show that all of our existence
and stability results carry over to stochastic models with white noise shocks,
in which the analogous sunspot solutions are noisy 2-SSEs and noisy ergodic
2-SSEs. In particular we show that for appropriate model parameter values
these solutions can be stable under learning. Finally, we illustrate our results
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for a Cagan-type model and for Sargent’s extension of the Lucas-Prescott
model of investment under uncertainty to incorporate tax distortions and
externalities.

2 The Model

We consider the nonstochastic model

Y = BEYir1 + 0Y—1. (1)

We assume throughout that 5 # 0, 6 # 0 and 5+ § # 0. For simplicity of
presentation we have omitted a constant intercept from the model. If instead,
say, Yy = i+ BEwi11+0y,—1, then the model can be rewritten in the form (1)
where ¥, is reinterpreted as its deviation from y = /(1 ——46). Throughout
the paper we focus on doubly-infinite covariance-stationary processes.

(Dvila 1997) showed that finite-state Markov solutions to (1) could exist
provided the Markov process is second-order. We begin by describing these
solutions. For n < k, let S, be the n''-coordinate vector of unit length
in R¥, and let Aj be the set of all convex combinations of the vectors S,,.
Notice that Ay is the £ — 1 unit simplex and thus elements of Ay represent
probability distributions over the “states” S,,. Let Z be the k x k lattice of
positive integers, that is,

T=1{1,.. k}x{1,... Kk},

and set

P={r:7 — Ax}.

Notice that P is simply the Cartesian product of A, with itself k% times,
and that an element of P may be identified with a k x k array of elements
in Ag. A second order k-state Markov process (with states .S,) is a sequence
of random variables s; and a k x k array of probabilities m € P such that for
all i,7,n e {1,---  k},

prob{si1 = Splsi—1 = Si, s = S} = m;(n).

We identify a k-state Markov process with its transition array =. A k-
state Markov stationary sunspot equilibrium (k-SSE) is a pair (7,7), where 7



is a k-state second order Markov process and 7 € R¥, with 7, # y; for i # 7,
is such that

Y=Y = st =5 (2)
satisfies (1). We will also sometimes refer to y; as a k-state Markov sunspot,
since y; itself follows a second-order k-state Markov process.

By explicitly considering the restrictions imposed by the model, we can
obtain a set of linear equations, any solution to which yields a k-state Markov
sunspot of the nonstochastic model. For each m and n write m,,, € A as a
column vector. If y; satisfies (2) then

Ewi1 =7, 7 < i1 = Sy and sy = S,,.
We conclude that the pair (7,7) is a k-SSE if and only if

Up — 0T, = B,y Vn,m e {1,---  k}. (3)
(3) represents a homogeneous system of k? linear equations. Thus 7, = 0
for all ¢ is always a solution; this trivial sunspot coincides with the solution
yr = 0.

Existence of non-trivial solutions requires the system of equations to be
dependant; this requirement imposes restrictions on the possible values of
the parameters. Further restrictions are imposed by the requirements that
the g, be distinct (so that the k-state sunspot is not degenerate) and that the
transition array represents legitimate probability distributions. (Dvila 1997)
and (Dvila and Guesnerie 2001) demonstrated existence for a subset of the
parameter space.

Proposition 1 (Ddvila). A k-SSE of (1) exists if and only if

1. —1<1—5‘5<1

2. —1<IT#<1

Given parameter values satisfying these conditions, the system (3) can
be used to construct a k-SSE. Note further that since this system is homo-
geneous, the existence of one non-trivial solution implies the existence of a
continuum of non-trivial solutions.® Finally, we remark that the region spec-
ified in Proposition 1 is a proper subset of the indeterminacy region. The
latter is given by the union of the two regions (i) + § > 1 with |0] < ||
and (ii) 0+ 0 < —1 with || < |5].

3The system (3) can be obtained from Déavila’s paper by noting that the solution set
to the ij*"-equation in (3) is equivalent to his manifold Vij-



3 Representations

We now distinguish between a rational expectations equilibrium (REE) and
its representation. An REE of the model is any stochastic process y; which
satisfies the associated expectational difference equation (1). A rational ex-
pectations equilibrium representation of the model is a linear difference equa-
tion, any solution to which is an REE. The importance of this distinction
stems from the fact that the analysis of stability under econometric learning
requires the specification of a representation; in fact, most accurately, it is
the representation, not the REE, that is or is not stable under learning. Fur-
thermore, the stability of a particular REE may depend on the associated
representation induced by the perceived law of motion; for a detailed analysis
of these topics for the model allowing also for intrinsic shocks, see (Evans
and McGough 2005). In this section, we develop representations of k-SSEs
that can be used to analyze their stability under learning.

Representations can be obtained as fixed points of a mapping called the T-
map, and thus we begin with its construction, which will be greatly facilitated
by the following lemma.:*

Lemma 1 Let A be a k x k matriz. Then there ezists matric B = B(A),
depending on 7, such that

/ /
E;syAsi 1 = s, Bsy.

To construct the T-map, we begin by specifying a perceived law of motion
(PLM), that is, a functional form of the representation in terms of param-
eters (coefficients) and observables. A PLM may also be thought of as the
forecasting model used by agents when forming expectations. These expec-
tations may then be imposed into the reduced form model (1), which we now
interpret as holding outside of an REE:

Y = BE Yrr1 + 0Yr—1, (1)

where E;y;+1 denotes the forecast corresponding to the PLM. Equation (1),
with agents’ forecasts imposed, determines the true data generating process,
or actual law of motion (ALM). If the PLM is well-specified, then the ALM
will have the same functional form as the PLM, thus inducing a map, called
the T-map, from the perceived parameters of the forecasting model, to the
actual parameters of the data generating process.

4Proofs of results presented in the main text are given in Appendix 1.
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Using the above lemma as a guide, we take our PLM to be
Yo = aye1 + sy Asy. (4)

For any real number z, denote by Ii(x) the k x k matrix with = in each
diagonal entry and zeros elsewhere. Now notice that

Efyyn = a’yeq +abs, (Asi+ s, B(A)s;
= a1 + 51 (I(a)A+ B(A)) 5.

Inserting this into the reduced form equation (1) yields the actual law of
motion (ALM) and thus determines the output of the T-map.® Set

Ti(a) = Ba®+6 (5)
Tr(a, A) = Ik(B) (Ix(a)A+ B(A)). (6)

Then the ALM can be written
= Ti(a)y—1 + s;_ng(a, A)sy.

Notice that a fixed point of the T-map determines a representation of an
REE. We denote by Q (7) C R x RF** the collection of fixed points of T’; the
index m reflects the fact that the T-map, and hence the set of fixed points,
depends on the matrix of transition probabilities 7. A fixed point of T;(a) is
a real root a;, for i = 1,2, of the quadratic 8a? —a + § = 0. The quadratic
has real roots if and only if 50 < 1/4. We have the following result.

Proposition 2 Assume the parameters of the model are such that k-SSEs
exist and the a; are real. Let y; be a stationary rational expectations equilib-
rium. If yy is a k-SSE with associated transition array w, then there exists a
point (a, A) € Q(7) such that ys = ayi—1 + s;_, Asq.

Note that (a;,0) € () so that Q(7) is not empty. We say that Q () is
non-trivial if it contains points other than (a;,0). The above result verifies
that there are non-trivial fixed points to the T-map. Furthermore, it shows
that any k-SSE can be represented as a fixed point of the T-map.

SImplicitly we are assuming that when expectations are formed the information set
includes s, s;—1 and y;—1 but not y;. See (Evans and McGough 2005) for further details
and a discussion of the case in which y; is also included in the information set.
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In the following sections we will use the T-map to analyze stability under
learning of k-SSEs using the E-stability principle. This will enable us to pro-
vide additional model parameter restrictions required for learning stability.
However, the above proposition also raises an interesting question: Are there
REE having representations of the form (4) that are not themselves k-SSEs?
To address this question more formally we make the following definition: A
k-state dependant sunspot equilibrium is any process y; satisfying (4) for some
transition array m and associated fixed point (a, A). Obviously, a k-SSE is a
k-state dependant sunspot equilibrium; we define an ergodic k-SSE to be a
k-state dependant sunspot equilibrium which is not a k-SSE. The following
natural questions arise:

1. Do ergodic k-SSEs exist?
2. If so,

(a) are they stable under learning?

(b) if the transition array 7 corresponds to a k-SSE, then do ergodic
k-SSEs exist with respect to this 7?7

The relevance of question 2, b, is the following: if no such ergodic k-SSE
exist, then, when we show stability under learning, we can be confident that
our agents are learning a k-SSE, and not an ergodic k-SSE. These questions
appear difficult to address in the general case. For the case k = 2 we will
find the answers to be “yes”, “sometimes”, and “no”, respectively.

4 E-stability

Consider the PLM (4) and write 8 = (a, A) and T(0) = (T1(a), Tx(a, A)).
Note that 7" maps R x R¥*¥ into itself. Let #* be a fixed point of the T-map.
We say 0* (and the associated representation) is E-stable (or “expectationally
stable”) provided the differential equation

de
o =T(0) -6 7)

is locally asymptotically stable at §*.¢6 The E-stability Principle says that if
the REE is E-stable then it is learnable by a reasonable adaptive algorithm.

6Here 7 captures “notional” time: see (Evans and Honkapohja 2001) for details.
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This principle is known to be valid for least squares and closely related statis-
tical learning rules in a wide variety of models. For a thorough discussion see
(Evans and Honkapohja 2001).” Let DT(6*) be the derivative of the T-map
evaluated at 6*. In the typical case of a locally unique fixed point %, and
making the standard regularity assumption that no eigenvalue of DT'(6*) has
a real part equal to one, necessary and sufficient conditions for E-stability
are that all eigenvalues of DT'(60*) — I, the derivative of T'(f) — 0 evaluated
at 0%, have real parts less than zero.

However, the definition of expectational stability just given is inadequate
when there is a non-trivial connected set of rest points of the differential
equation (7), as is the case for our model: if Q (7) is locally connected then
no point in €2 is locally asymptotically stable. In this context we restate the
notion of E-stability as follows: we say that a set of fixed points, @, is E-
stable provided there is a neighborhood U of () such that for any 6, € U the
trajectory of 6 determined by the differential system (7) converges to a point
in ). A necessary condition for E-stability of () is that for all ¢ € @), the
non-zero eigenvalues of the derivative of T'(f) — 6 evaluated at ¢ have negative
real part. Sufficient conditions are in general difficult to obtain, because of
the presence of zero eigenvalues, but in the case of a single zero eigenvalue
these necessary conditions are sufficient. This is proved in Proposition 11 in
Appendix 2.

Assume the parameters of the model are such that sunspots exist and the
roots of the associated quadratic, fa? —a + § = 0, are real. To analyze the
stability of €2 () in this case, begin by noticing that these real roots are the
fixed points of T} and are given by

1—T—453 1++I—435
T and a9 = T

It follows that (1) = Q (7) U Qs (1) where

a)p =

Q; () ={(a;, A) € Q(m)}.

Since T} is decoupled from T,, we can analyze its stability independently.
We have that DTj(a) = 28a, which immediately implies that the subsystem

"The connection between statistical learning and E-stability is established using con-
vergence results from the stochastic approximation literature. This technique is described
in (Marcet and Sargent 1989), (Woodford 1990) and Chapters 6 and 7 of (Evans and
Honkapohja 2001).



in T} is locally asymptotically stable if and only if @ = a;. Thus we have the
following proposition:

Proposition 3 The set Q0 (7) is not E-stable.

Note that DTj(a;) < 1, which gives us hope that €, (7) may be E-
stable. It suffices to show that (a;, A) € € (7) implies that the eigenvalues
of DTy(ay, A) have real part less than one. In general this appears to be
difficult to demonstrate. In the following Section we analyze the case k = 2.

5 2-State Sunspots

To obtain explicit results concerning the existence and representations of
ergodic k-SSEs, as well as to derive specific stability results for both k-SSEs
and ergodic k-SSEs, we now use the theory set out above to consider in detail
the case k = 2. In the process we obtain a simple method by which both
2-SSEs and ergodic 2-SSEs can be constructed.

5.1 Existence of 2-SSEs

Many of the details presented in this subsection are contained in (Dvila and
Guesnerie 2001); we include them here for completeness. The pair (7,7) is a
2-SSE for the model (1) if and only if

(1) + me(2) = 146711 —-4), (8)

(1) +m2(2) = 146741 +0), (9)
T22(1)¥1 + T11(2)7; 0, (10)
(1+0m1(1) — m2(2))y; = (m21(1) — (1 + 0m12(2)))7o- (11)

For the sunspot to be non-trivial, it must be that 3, # 7,, which, by restric-
tions (10) and (11), implies

m22(1) . m11(2)
1 + (571'21(1) — 7T12(2> N 1 + (571'12(2) — ’7T21(].) .

(12)

Restrictions (8),(9), and (12) can be combined to determine the transition
array up to one degree of freedom. Equation (10) or (11) can then be used
to determine the ratio of the states.
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According to the preceding arguments, 2-SSEs exist provided transition
arrays satisfying (8),(9), and (12) exist. The restrictions on the transition
probabilities can be rewritten as

1—-9

T = 3 + a2, 7T12=—B+7T22 and 7T21=E+7T22» (13)
where, for notational simplicity, we write m;; = m;;(1). Set
b—146 1
Lﬁaé = MmaxXy———, 5, 5
(8,0) =353
1—9 ) 1
UB,0) = min{l — —214+21-21.
(6:) ¢ s g G

Imposing 7;; € (0,1) yields the following: A 2-SSE exists if and only if

(0,1) N (L(8,9), U(8B,6)) # 0,

where we say (L,U) = if U < L. A straightforward argument then shows
that this set is non-empty if and only if 3 and ¢ satisfy the restrictions in
Proposition 1.

FIGURE 1 ABOUT HERE

In Figure 1 the regions of parameters corresponding to existence of 2-
SSEs and, simultaneously, real roots of the quadratic, are denoted by A; and
B;y. Regions A, and By denote those parts of the indeterminacy regions in
which there are real roots but 2-SSEs do not exist.

5.2 Representations
The T-map can be explicitly computed as
Tl ((I) = ﬁa2 + (5,

(@A + m1(1) A + 111(2) A1) B(adAiz + mi2(1)Aor + m12(2) Asa)

_| B
Tr(a, A) = BlaAsy + mo1(1) A1 + m01(2) A1) BlaAsy + maa(1)Agy + ma(2) Aga)
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The fixed points of T} are q = =140 w, and the fixed points of 715 are

determined by the following four equations:

1/B8—a)An = muAn+
A = mppAn +
Ay = maAn +
1/B—a)Ayn = mpAy +

- 7T11)A12
I 7T12)A22
)
)

Al?

1-— 29 AQQ.

1—7T21

o~ o~ o~

This linear homogeneous system has non-trivial solutions only if linear de-
pendence is exhibited.
To investigate this, notice that we can write A;; = K;; A2 where

1 — 711
Ky = o
1 1/ﬁ—a—7r11
Ko — o1 K +1— 79
Ky = T2 o1

1/ﬁ—a—(1—7r22)'

We conclude that a non-trivial solution exists if and only if the following
equation holds:
1/ﬁ—a:7T12K21+(1—7T12>K22. (14)

Recall it was shown that 2-state sunspots exist if and only if the transition
array satisfies (13). Algebra (Mathematica) shows that imposing these re-
strictions on 7 implies that equation (14) holds. Notice that, in this case,
there exists a one-dimensional continuum of representations: the choice of
Ao is free, but once made, the remaining A;; are pinned down. Further, to
construct a 2-SSE, simply choose 7o € (L(3,0),U(3,0)) and pick A, arbi-
trarily. The above equations can then be used to determine the remaining
parameter values.

5.3 Existence of ergodic 2-SSEs

In Section 3 we wondered, in question 2b, for 7 satisfying (13), whether fixed
points determining representations of ergodic 2-SSEs existed.
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Proposition 4 Suppose B and § are such that 2-SSEs exist and the roots of
the associated quadratic are real. Suppose a denotes a root of this quadratic.
Let  satisfy the existence restrictions (13). If Ty(a, A) = A and

Yo = aye—1 + 5;_1 Asy,
then y; is a 2-SSE.

Proposition 4 implies that if 7 satisfies (13), and if € (7) is E-stable,
then agents will necessarily be learning a 2-SSE, and not possibly an ergodic
2-SSE.

Next we have the following result concerning the existence of ergodic
2-SSEs.

Proposition 5 If (3,0) is in the indeterminate region and the roots of the
usual quadratic are real then there exist transition arrays m such that Q(m)

is non-trivial. Furthermore, m can be chosen to wviolate (13), i.e. ergodic
2-SSEs exist.

The result implies that provided the model is indeterminate, there exist
ergodic 2-SSEs. Thus, in Figure 1, ergodic 2-SSEs exist throughout regions
Ay, Ag, By and By;. We conjecture that the above results hold for & > 2.
Also notice that while the transition array m need not satisfy (13) for 2-state
dependent sunspot equilibria to exist, and, in fact, when (5,0) € A; U By,
cannot satisfy (13) for ergodic 2-SSEs to exist, there may still be restrictions

on its values. In fact we have the following result on the dimensionality of
ergodic 2-SSEs.

Proposition 6 Let I be the unit cube in R*. Let R = {m € I such that
(13) holds} and R = {m € I such that Q(x) is nontrivial}. Then (i) R is
homeomorphic to R and (ii) there is a subset of R that is homeomorphic to
R3, but R has Lesbesque measure zero as a subset of I.

Notice that R C R, and for 7 € R there exist 2-SSEs while if 7 € R\ R there
exist ergodic 2-SSEs. Thus this proposition shows that the set of transition
arrays for which ergodic 2-SSEs exist is much bigger than the set for which
2-SSEs exist. However, R is still very restrictive since it has measure zero as
a subset of I.

We can also characterize the range of ergodic 2-SSEs. We have
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Proposition 7 Given a and A, assume that y, is an ergodic 2-SSE. Let
R C R be the range of y;. Then R is uncountable and if F© C R is finite
then prob{y; € F'} < 1.

Thus ergodic 2-SSEs are qualitatively very different from 2-SSEs. Both types
of solution are driven by second-order 2-state Markov processes, but ergodic
2-SSEs can take infinite many values, while 2-SSEs take only two values. The
distinction between 2-SSEs and ergodic 2-SSEs does not appear in the purely
forward looking model and arises specifically because of the dependence of
y; on its previous value.

The complex behavior of ergodic 2-SSEs is revealed through simulations.
Figures 2.1 and 2.2 give the time paths for y; of an ergodic 2-SSE for two
different choices of (3,0), as indicated in the Figure. The time series of
these ergodic 2-SSEs are particularly intriguing because they show compli-
cated dynamics even though there is no intrinsic noise and the process is
driven entirely by an exogenous two state Markov process. This shows the
clear potential of stationary sunspot equilibria, driven by finite-state Markov
processes, for explaining complex economic fluctuations.

Figure 2 Here

To gain intuition for the behavior witnessed in Figure 2, we may further
analyze the dynamic properties of ergodic k-SSEs via the phase space. Recall
that ergodic k-SSEs have representations of the form

Yr = Q1Yp—1 + Sp_1 Asy. (15)

In (Evans and McGough, 2005), we showed that every rational expectations
equilibrium of the reduced form model (1) has a common factor represen-
tation; this means that there exists a martingale difference sequence ¢; so
that,

Yo = a1Yi—1 + T, (16)
M = Ggf—1 + & (17)

We must conclude that n, = s}, Asy, so that s;_; As; is a first order markov
process. This equivalence also tells us that 7, has k? states. If & = 2, then we
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can compute that the possible states for 7, are n = (n1,...,m1) = vec(4’),
and the associated transition matrix P is

7T11(]_> 7T11<2) 0 0

0 0 7T12(1) 7T12(2)
7T21(1) 7T21(2) 0 0

0 0 man(l) mn(2)

P =

Equation (16), together with the fact that 7, is a four state process,
suggests that we may think of the dynamics of y; as being determined by
state-contingent linear systems. In particular, as long as, say, n; = n;, ¥
will converge toward (1 — a;)~'n;, which is the steady-state associated to the
dynamic system y; = a1y;—1 + 7;- This convergence will continue until 7
switches states, to, say, 7;, and the system begins converging toward (1 —
a1)"'n;. These conditionally linear dynamics are further restricted by the
transition matrix P, which imposes that 7y and 73 are reflecting states, i.e.
Nt = N2 = Nev1 7 12, etc.

To gain further intuition about the dynamics of ergodic 2-SSEs, consider
Figure 3 which describes a case when k£ = 2. Here, in phase space, i.e. in
the (y¢—1,y:)-plane, are plotted the four lines, labeled L;, which dictate the
dynamics of y; in each of the four states: note that the slope of each line is
a1, so that the lines differ only in the intercept terms, which correspond to
the n;’s. The 45° line is plotted as well. Set

=1 —a) 'y and P = (1—a)) 'n.

Now consider the dynamics implied by the initial conditions yy = ¥ and
No = M. If 77 = my then y; = yo. If 71 = n3 then follow the arrows first to
L3, and then to the point labeled “B.” The horizontal (and vertical) position
of this point corresponds to y;. If 7 remained in state 73, then y; would
converge toward point “C”; however, according to the transition matrix P,
that never happens. The value of 7, will either be 7, in which case we follow
the solid arrows, or it will be 7, in which case we follow the dotted arrows;
the process continues with the relevant dynamic system being determined
in each time ¢t by the value of 7. Figure 4, which plots a simulation of an
ergodic 2-SSE, supports the intuition provided by this diagram.

Figures 3 and 4 Here
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Now consider the case in which the 2-state dependant sunspot equilibrium
corresponds to a 2-SSE. Then (16) implies that the two possible states for y,
are given by g as defined above, and further, the states n are restricted by
the conditions

ns = (1—a)'(m —ny) = —np.

Graphically, this corresponds to the point B coinciding with #;: see Figure
5.

Figure 5 Here

One more result may be obtained using the representation (16). Though
we have throughout assumed that the equilibrium processes under consid-
eration are doubly infinite, many applications require the specification of
an initial condition. The next result shows that in case the transition ma-
trix corresponds to a 2-SSE, even if the initial condition does not meet the
restrictions imposed by (10) and (11), convergence to a 2-SSE still obtains.

Proposition 8 Let 7, be the common factor sunspot associated to the 2-SSE
yi. Let go € R and g, = afy_1 + 1. Then |g, — yi| — 0 almost surely.

To prove this, simply notice that

—

t_
Yy = 1Yo + a
0

>

t—k>

i

and similarly for y,. Thus |§; — ;| = |a1|"|yo — 90| — O.

5.4 E-stability of 2-SSEs and ergodic 2-SSE s

We can now use the explicit form of the T-map to analyze E-stability. As
observed in Section 4, to show that §2;(7) satisfies the necessary condition
for E-stability, it suffices to analyze the subsystem T, for a = a;. We have
that

Blar +m1) B(1 — 1) 0 0
Ovec(Tz) _ 0 Bay B2 Bl —mp) (18)
dvec(A) Pa1 Bl —mn) Bay 0 '
0 0 Pray Blar + 1 — ma)
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E-stability requires that the real parts of the eigenvalues of this derivative
must be less than one when evaluated at points in ;. We analyze the
stability of 2-SSEs and ergodic 2-SSEs separately.

First, notice that the above derivative is independent of the matrix A.
Also, provided the transition array 7 satisfies the restrictions (13), it can
be verified algebraically that the eigenvalues are independent of the chosen
transition array. Thus, analysis of the eigenvalues of DT5 requires only vary-
ing 0 and §. We further restrict the parameter space to guarantee existence
of representable 2-SSEs. Specifically, we assume that parameters satisfy the
conditions in Proposition 1, and further that 5§ < 1/4, so that the associated
roots are real. Finally, we consider negative and positive values of 3 sepa-
rately, labeling the relevant regions “Area A;” and “Area B;” respectively:
see Figure 1. We have

Proposition 9 Consider 2-SSEs. (1) The set 0 is E-stable for parameters
in Area Ay. (2) The set € is unstable for parameters in Area Bj.

To assess the E-stability of ergodic 2-SSEs, we again analyze the eigenval-
ues of (18). However, when (/3,6) € A; U By, the transition arrays necessarily
do not satisfy (13), and, in fact, these eigenvalues may depend on the values
of the probabilities m. This has the unfortunate consequence of increasing the
dimension of the parameter space and making analytic results intractable.
Specifically, we must now consider stability of ergodic 2-SSEs for different
0,0, and 7. To establish existence of stable ergodic 2-SSEs, we proceed as
follows: for values of (f3,4) in each of the four regions A;, B;, (i = 1,2), we
use the method described in the Appendix to choose a value of 7w to which
corresponds ergodic 2-SSEs, and then we analyze the stability of the associ-
ated set of fixed points () by numerically computing the eigenvalues of
(18). We obtain the following result.

Proposition 10 Consider ergodic 2-SSEs. (1) For i = 1,2, there exist
(8,0) € A; and transition array m violating (13) such that Qy(w) is non-
trivial and is E-stable. (2) For i =1,2, there exist (3,0) € B; and transition
array m violating (13) such that Qy(m) is not E-stable.

This result implies that there exist stable ergodic 2-SSEs for values (3, 6)
such that 2-SSEs do not even exist. Our numerical are stronger than the
above Proposition indicates: the stability of Q;(7) obtained for all values of
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(8,9) € A; and for all transition arrays = that we tested. Similarly for all
values of (3,d) € B; and 7 tested, we found instability. Based on this we
make the following conjecture.

Conjecture. (1) If (8,6) € A = Ay U Ay and if 7 is such that Q(7) is
non-trivial then Q(mw) is E-stable. (2) If (3,0) € B = By U By and if 7 is
such that Q4 (m) is non-trivial, then Q(m) is not E-stable.

According to the conjecture, for 2-state dependant sunspot equilibrium,
the E-stable region is given by A = A; U As. Summarizing, in region A; we
know that 2-SSEs exist and are E-stable, while in region A, 2-SSEs do not
exist. E-stable ergodic 2-SSEs exist in A and ergodic 2-SSEs are conjectured
to be E-stable throughout A.

6 Simulations

In this Section we provide the standard real-time learning algorithm based
on recursive least-squares and present numerical simulations illustrating the
stability of 2-SSEs and ergodic 2-SSEs.
Agents are assumed to have the PLM (4), reproduced here for conve-
nience,
Y = ayp—1 + sy_1 Asy,

and are assumed to use OLS (ordinary least squares) to estimate the associ-
ated parameters a and A. Set

Xi = [ye-1,50-1(1)5:(1), 5-1(1)56(2), 80-1(2)5:(1), 8:-1(2)5:(2)],

where s;(i), for i = 1,2, denotes the components of s;, and write § =
la, vec(A)'], where vec(A) is the operator that stacks in order the columns of
A into a column vector. (Earlier we defined § = (a, A) but it is now conve-
nient to rewrite 0 as a column vector). This allows us to write the stochastic
process for the estimators recursively® as

1
0, = 0,1+ ERt_lXt(yt —0,_,X,)

1
Ry = Ry + g(XtXt/ —Riy)

8See, e.g., (Marcet and Sargent 1989) or pp. 32-3 of (Evans and Honkapohja 2001).

18



where
Y = Ti(as—1)ye—1 + SQ,1T2(Gt—1, Ai_1)8t.

The term ¢! in the recursive algorithm is called the “gain sequence.” This
or closely related gain sequences arise in least squares and other statistical
estimators. The behavior of this algorithm was analyzed via simulations.
The algorithm was initialized by choosing points at random within a given
neighborhood of the set (7).

Analytic results implying convergence with probability one typically re-
quire amending the algorithm with a projection facility. Alternatively, one
can adjust the gain of the algorithm to obtain convergence with probability
approaching one. For the simulations produced here we scale the gain of the
RLS algorithm by 1/25, thus increasing the probability of convergence.

Our results on E-stability show that convergence to a 2-SSE obtain only
if the model’s parameter values are chosen to lie in Area A;. We chose
several different parameter pairs in this area and for each pair ran several
simulations. For each pair of values we found that with positive probability,
i.e. for a positive proportion of the simulations, convergence to €, (7) appears
to obtain.” Similar results obtain when ergodic 2-SSEs were analyzed in
region A.

FIGURE 6 HERE

Figure 6 shows portions of the time series for y; for a simulation in which
there is convergence to a 2-SSE. In this figure we set 5 = —3 and 0 = 1. Here
REE denotes the path under fully rational expectations, while RTL denotes
the path (for the same sequence of random sunspot shocks) under real time
learning.'® The final segments, shown in the northeast and southeast panels,
are for a time period after learning has nearly converged.

7 Extension to Stochastic Models

In order to reduce the burden of the theoretical argument and to keep closer
to the literature of finite-state sunspot equilibria, our results have been pre-

9For all simulations in which convergence did not appear to obtain, the norms of the
estimates appear to diverge to infinity.

10The REE path illustrated in the Figures is obtained using the parameter vector 6 €
Q4 () that is closest, in the Euclidean metric, to the terminal simulation value for 8; under
RTL.
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sented in terms of the nonstochastic model (1). In applied work, however,
stochastic models are often employed. In this Section we show how our results
can be extended to models with intrinsic random shocks. To keep matters
simple we consider the model:

Y = BB + 0Y—1 + vy, (19)

where v; is a white noise exogenous process and F,y;,1 denotes the mathe-
matical expectation of 4,1 conditional on information available at ¢.

A rational expectations equilibrium of the stochastic model is any pro-
cess y; which solves (19). Again we restrict attention to doubly-infinite,
covariance-stationary solutions. For a complete characterization of such so-
lutions see (Evans and McGough 2005); there it is also shown that the norm
of a doubly infinite, covariance stationary solution will be uniformly bounded
in both conditional and unconditional expectation.

Let z; be a stationary solution to the stochastic model (19) that does not
depend on extrinsic noise: we will refer to z; as a “fundamentals solution”.
It is well known that there exist such solutions to the noisy model (19) if and
only if the associated quadratic 3a®> — a + § has at least one root with norm
less than one. If the model is determinate, then z; is the unique REE, and
if the model is indeterminate and if the roots of the associated quadratic are
real, there are two fundamentals solutions. In either case, we may take the
fundamentals solution z; to have a representation of the form

2y = azi—q + by, (20)

where a is a root of the associated quadratic and b = (1 — 3a)~!. Because of
their parsimonious representation, these REE are often called minimal state
variable (MSV) solutions.

We now couple an MSV solution with a k-state dependent sunspot equilib-
rium. Let (; be a solution to the nonstochastic model (1) and let v, = 2z, + (.
Since Fyyii1 = Frzir + By and vy = 241 + (41, it is immediate that y,
is a solution to (19). If (; is a k-state dependent sunspot equilibrium, we call
y; a noisy k-state dependent sunspot equilibrium; if (; is a k-SSE, we call y;
a noisy k-SSE; and if ¢; is an ergodic k-SSE, we call y; a noisy ergodic k-SSE.

Woodford’s conjecture, that the model must be indeterminate for station-
ary sunspot equilibria to exist, holds in both the stochastic and nonstochas-
tic model, and indeterminacy in either model obtains when both roots of the
above quadratic lie inside the unit circle; see e.g. (Evans and McGough 2005)
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for details. Thus if the model’s parameters are such that noisy k-state depen-
dent sunspot equilibria exist in the nonstochastic model then a stationary
fundamentals solution of the noisy model exists. Combining this observa-
tion with the definition of a noisy k-state dependent sunspot equilibrium,
we find that noisy k-state dependent sunspot equilibria and noisy ergotic 2-
SEEs exist whenever the model is indeterminate, and when the restrictions
on the model’s parameters obtained by Davila are met, noisy 2-SSEs exist.
Although the result is almost immediate, it might appear surprising that the
white noise disturbance, which may make any value of y;,_; possible, does
not disturb the careful balance required for k-SSEs.
To analyze stability under learning, we specify the stochastic PLM

Y = ays_1 + 8,1 Asy + buy. (21)
The corresponding ALM is
ye = Th(a)ye—1 + s;_ng(a, A)si + Ts(a, b)vy, where

T3(a,b) = Bab+ 1.

The collection of fixed points is now Q (1) C R x RF* x R,
For the model (19) the analog of Proposition 2 becomes:

Proposition 2’ Assume the parameters of the model are such that noisy
k-SSEs exist and the a; are real. Let y; be a stationary rational expectations
equilibrium. If y; = 2} + (; is a noisy k-SSE with associated transition array
7, then there exists a point (a, A,b) € Q (7) such that y; = ays—1 + S}_1 Asi +
bu,.

The E-stability results in Section 5.4 apply also to the case of the stochas-
tic model (19). The stochastic case adds one additional E-stability condition
from T3(a,b), namely a3 < 1. Adding this condition clearly leaves the insta-
bility results unaffected. The stability results of Proposition 9 are unaffected
because the stability requirements for 2-SSEs in the nonstochastic model
already include the stronger requirement 2a3 < 1. Finally the results for
Proposition 10 are numerical and analogous numerical results hold for noisy
ergodic 2-SSEs. Thus all of the E-stability results from Section 5.4 carry
over to the noisy versions of the equilibria in the model (19) with white noise
shocks.

The algorithms for real-time recursive least-squares learning also extend
to the stochastic model by expanding the regressors X; to include v, and
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now writing 6 = [a,vec(A)’,b]. Under real-time learning the estimates the
stochastic process followed by y; is now given by

Yy = Tl(at—l)yt—l + 3:5_1T2(at—17 At—1)8t + Tg(at—h bt—l)vty

where under learning v; is now also in the information set. Time paths
of stable noisy 2-SSEs and stable noisy ergodic 2-SSEs show the kind of
random irregular fluctuations typical in macroeconomic data, even though
the sunspot process itself takes only two states.

8 Applications

In this section we consider two examples that illustrate the application of
the theory developed above. We first briefly consider a Cagan-type model,
which can be indeterminate, yet in which neither k-SSEs nor stable ergodic
2-SSEs exist. We then consider the (Sargent 1987) extension of the (Lucas
and Prescott 1971) model of investment under uncertainty to allow for taxes
and externalities. For this model there are parameter values that yield both
stable 2-SSEs and stable ergodic 2-SSEs.
The discrete-time form of the Cagan model can be given as

pr = BEprs1 + amy, (22)
where [ lies in the unit interval. Assume a money supply rule of the form
My =T+ {pe-1. (23)

A white noise shock to the money supply could easily be added. Combining
equations yields the reduced form

pe = o + BEpi1 + aépi_y. (24)

Let 0 = a&. Since [ > 0, this model is indeterminate provided § > 1 — (3 and
0 < B. With the value of ¢ unrestricted, it follows that for % < (< 1and
appropriate 9, the model is indeterminate. However, with 0 < 3 < 1 only
the B, region of indeterminacy is feasible. Thus in this model k-SSEs do not
exist. Ergodic 2-SSEs do exist, but will not be stable under learning.!! This

117f the Cagan model is interpreted as obtained from a linearized overlapping generations
model of money then 8 < 0 is possible. We do not pursue these cases here.
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example shows that the requirement that sunspot equilibria be stable under
learning can be a demanding test.

Our second example is based on Sargent’s extension of the (Lucas and
Prescott 1971) model of investment under uncertainty to allow for dynamic
market distortions due to taxes and externalities; see Ch. XIV of (Sargent
1987).12 Consider a competitive industry with N identical firms. Output z;
of the representative firm at ¢ is given by

= o + foky + 1 + faKiq,

where k; is the capital stock of the individual firm and K; = Nk; denotes
the aggregate capital stock. The presence of the two terms in K, reflect
contemporaneous and lagged external effects. These may be positive or neg-
ative, so we do not restrict the signs of f; or fs, but we assume f; > 0
and xg > 0. Taxes are levied on firms on capital in place. The rate itself is
assumed to depend on current and lagged aggregate capital stock, so that
Tt = go + g1 K; + g2 K, 1. Total output is X; = Nx;, and market demand is

pt:D—AXt+Ut,

where u; is white noise. We require p; > 0. In this example we have included
stochastic shocks, as is standard in this application, but we remark that
nonstochastic versions are also sometimes considered, e.g. see Chapter IX of
(Sargent 1987). The firm chooses k; to maximize

> C
Lo ZBt{pt(% + fokt + filKe + foli 1) — why — Tiky — E(k?t - kt—l)2}7

t=0

where k_; is given and w, the rental on capital goods, is for convenience
assumed to be constant. C' > 0 reflects adjustment costs for changing k;.
The Euler equation for this problem can be written

ptf() - (w + Tt) + BCE:(kt_;'_l - C(l + B)kt -+ Ck:t—l =0 (25)

for ¢ > 0. For an optimum solution for the firm we also require that k; >
0,z; > 0, and that the transversality condition is met.

12For further details of the temporary equilibrium set-up see (Evans and McGough
2005). Stability under learning of the MSV solutions was examined in Section 8.6.2 of
(Evans and Honkapohja 2001).
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In order to define the temporary equilibrium and study learning, we need
to carefully specify the information structure. We assume that firms use
observations of lagged capital stock, the current intrinsic exogenous shocks
uy and the current extrinsic exogenous variable s; to make forecasts E; k.
Given these forecasts, firms choose their demands for capital k;, conditional
on p; and 7, to satisfy (25). The temporary equilibrium is then given by the
market clearing values of p;, 7; and k;. Using the identical agent assumption,
and combining equations, we obtain the reduced form

ke = p+ BE ki1 + 0ki—1 + yuy,

where = BOQ™, § = —(foAfaN?+ o N — O, Q= foAN(fo+ f1N) +
@ N +C(1+ B)and vy = Q1

This form differs from our stochastic model only by the presence of a
constant term. Incorporating the constant term into the above theory is
straightforward and the details are left to the reader. The only issue concerns
E-stability: the PLM must be modified to include a constant thus creating an
addition component of the T-map. This component is not coupled with the
system T, and analysis of its derivative is elementary. It can be shown that
if the model without the constant exhibits stable k-state dependant sunspot
equilibria, then the model with the intercept does as well.

With no externalities or taxes there is a unique stationary REE. How-
ever, in general the parameters § and 0 are unrestricted. In particular,
for some parameter regions the associated quadratic has both real roots in-
side the unit circle, and there are multiple stationary solutions, including
stable noisy k-state Markov sunspots. This model is easy to study numer-
ically. As already noted, when externality or tax distortions are present
the indeterminacy case is possible. Furthermore, both 2-SSEs and ergodic
2-SSEs that are stable under learning arise in some regions of the param-
eter space. For example, normalizing with N = 1, the parameter values
A=1,B=095C=046,91 = —1,90=0.3, fo =1, f1 = —1, fo = 0.3 leads
to § = —4.24 and 6 = 1.36, which is in region A;. Empirical work inves-
tigating k-state dependent sunspot equilibria in this model would therefore
appear to be of considerable interest.
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9 Conclusion

Finite state Markov stationary sunspot equilibria, in forward-looking models,
played a central role in the early literature on expectations driven fluctua-
tions. More recently they have received renewed interest because of their
stability under learning in a substantial region of the parameter space. In
this paper we have laid forth a theory that allows for the analysis of such
equilibria in linear models with a predetermined variable. Both nonstochastic
models and models with intrinsic random shocks were analyzed. We obtained
existence for parameters in a proper subset of the region of indeterminacy.
We have also shown existence of a related but distinct class of sunspot equi-
libria, namely those that are driven by finite-state Markov processes, but
that take on infinitely many values even in nonstochastic models.

To analyze stability under learning we developed representations com-
patible with both classes of sunspot solutions, allowing us to establish the
stability of sunspot equilibria for parameter values in a proper subset of the
regions of existence. These theoretical results were supported by real-time
simulations when agents learn using least squares estimators. The results
of this paper indicate that stable finite-state Markov sunspot equilibria, and
finite-state dependent sunspot equilibria, can arise quite generally, and sta-
ble noisy versions of these equilibria arise in models with intrinsic random
shocks. Extension of these results to higher order and to multivariate models
would be of considerable importance to applied macroeconomic models that
incorporate both expectations and predetermined variables.
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Appendix 1

Proof of Lemma 1. We employ the following notation: if A is an ny x my
matrix and B is ny X my then their direct sum is an (ng + ng) X (mq + my)
matrix given by

A@B—{A 0}.

0 B

Let (i) be the matrix (m,,,(i)) and observe that if A is a k x 1 vector whose
entries are each one, then

Eisii1 = (®isy_y7(i)se) A (26)
Then

EisiAsiyn = SiA (D8, m(i)se) A
= N (®is,_ym(i)s;) A'sy
= s [m(1)sg, -, 7(k)s;] A'sy. (27)

Now let C™ be the k x k matrix whose m!"-column is the n**-column of 7(m)
and B be the matrix whose n*-column is the n**-column of C"A’. Then for
all possible s; and s;_; we have that the right hand side of (27) is equal to
s, | Bs;.Bm

Proof of Proposition 2 (and Proposition 2’): It suffices to prove that
it ¢; = (;, & s =95, is a solution to the homogeneous model then

G = a1 + s, 1 Asy (28)

for some fixed point A of Ty, where a is a fixed point of Ty. Set A;; = (; —a(;.
Explicit computation shows ¢, = (; < s, = S; satisfies (28), so it remains
to show A;; is a fixed point of T5. This requires an explicit formula for the
T-map. The verbal description of the matrix B(A) given in Lemma 3 yields
the following form for the 5" component of Ty(A):

To(A)ij = Blady + Y mij(m) Aj). (29)

13For an explicit expression for B(A) see the proof of Proposition 2.
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Thus A is a fixed point if and only if

1

¥

(Z)Aij = Z Wij(m>Ajm. (30)

This set of k? linear homogeneous equations always has zero as a solutions;
nonzero solutions exist only in case of linear dependency, which will not
hold in general. However, because (, is a sunspot equilibrium, we have that
equations (3) hold, that is

k
(= 0C, =8 mii(m)C,. (31)
m=1

We proceed to show that if A;; = ¢; — a(; then (31) implies (30). We have
(31)

8(C;—agy) = (6 —a)C; + Bay_my(m)C,,
8(C; — ag;) = —Ba’C; + Ba Dy mii(m)C,,
8(¢; — ag;) = Ba Y _mi;(m)(C,, — al;)
Ay = Bay  mij(m) Ajm

& (a—a’B)Ai; = fa ) mij(m)Ajm,
and this last line holds if and only if (30) holds.m

SO

Proof of Proposition 4. The proof of this Proposition uses the following
Lemma.

Lemma 2: Let 7 satisfy the ezistence restrictions (13). If Ty(a,A) = A

then

l—a 1—a

A

ij

Proof of Lemma 2: Let A;5 = 1. Since A is a fixed point, we have that
A;j = K;jA1o. Thus it suffices to show K;; = f_—fi — % This can be shown
using Maple.m

Proof of Proposition 4. Here we state and prove the generalization of this
proposition to the stochastic model (19):
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Proposition 4’ Suppose 3 and 6 are such that 2-SSEs exist and the roots
of the associated quadratic are real. Suppose a denotes a root of this quadratic
and b= (1—Fa)~t. Let 7 satisfy the existence restrictions (13). If Ty(a, A) =
A and
Y = ayp—1 + S;_1 Asy + vy,
then y; is a noisy 2-SSE.
For the nonstochastic case simply set bv; = 0 in the following proof.

Proof of Proposition 4’: For each realization of the process s; there is a
map 7 : Z — {1,2} such that s; = S; < 7(t) = i. Thus we can write (4) as

(1 —aLl)ys = Ar—1)r@r) + buy, (32)

where L is the lag operator, i.e. Ly; = 1;_1. Now let A= vec(A) and for rea-
sons to be clear later, index A starting with 0, that is, A = (AO, Ay, As, A3)
Let 0 : Z — {0,1,2, 3} be defined by

oct)=7t—-1)+70t—D7(t)+7(t)+ 7t —1)(1 —7(t)),
where 7 = 7 — 1. Then A(,(t) = A;r@—1). This allows us to write equation
(32) as A
(I —aLl)y, = Ay + buy. (33)
The Lemma implies

~

Agty = Art—1yrr) = (1 — aL) A )r1)-

1—
Combine this with (33), and using stationarity, which allows us to cancel the
lag polynomial (1 — al), yields

1 b
—A
1o OO T T 4L

Yt = Ut,

which is a 2-SSE. =
Proof of Proposition 5. Label the real roots as a; and notice that 1/ —

a; = a; = o for 7,5 = 1,2 with 7 # j. Thus we can write the conditions for a
fixed point of the T-map as
aAy = mnAn 4 (1 —mn)Ap (34)
adyp = moAy + (1 —mi2) Ao (35)
aAy = moAn + (1 —m)Ar (36)
gy = Tyl + (1 — Ta2)As (37)
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where || < 1 by indeterminacy. We proceed as follows: fix a and show
that we can choose A;; and 7;; so that the above conditions are satisfied.
The key observations are that, for each equation, the left hand side is a
convex combination of the A;; on the right hand side, and that the m;; are
independent across equations.

Case 1: a > 0. Choose A;; so that

A22 < Alg <0< A21 < AH. (38)
Case 2: a < 0. Choose A;; so that
—Alg < A21 < OzAlg < All <0< Agz < —Agl < A12. (39)

Case 1 implies

aApn € (A, An)
aAy € (Ag, A)
ady € (A, An)
aAyy € (A, As),

and Case 2 implies similar set membership except that the endpoints of each
of the intervals are reversed. Equations (34) - (37) follow immediately from
the implied choice of 7. It remains to show that if (3,0) € A; then there
exist 7 not satisfying (13) such that ©;(7) is not trivial. Given the choices
of A;;, the associated transition array can be constructed as follows:

11 ( )
T2 = (Ay — Ag) ™!
21 = ( )

( )

T2 =

Begin by noticing that, according to (13), the set of m to which correspond
2-SSEs is one dimensional, being pinned down by the choice of m,. Now
notice the choice of Ay and Ay determines my. On the other hand, in both
case 1 (case 2), for given choice of Ag; and Asy there are multiple Ay and
Ay; which satisfy the restriction (38) ((39)). In particular, the choice of Ay
and Ass does not pin down the values of 711, 712 and m;. This shows the set
of 7 to which correspond non-trivial Q(7) has dimension greater than one,
thus completing the proof. m
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Proof of Proposition 6. Clearly R, the set of 7 satisfying (13), is a line
segment and is therefore homeomorphic to R. Let € () be the set of fixed
points of the T-map. If (a, A,b) € Q () and A # 0, then the process

Yr = ayi—1 + Sy Ase + by

is a 2-state dependent sunspot equilibrium, and if the associated m ¢ R then
this process is an ergodic 2-SSEs. Let R be the set of all 7 € I so that Q (m)
is non-trivial, that is, so that € (7) contains points other than (a, 0, b) . Every
2-SSE is a 2-state dependent sunspot equilibrium, thus R C R. Let a be a
fixed point of Ty, o = 1/83 — a, and define a map M : I — R*4 by

o — T11 0 T — 1 0
. —T21 « o1 — 1 0
M(ﬂ-)_ 0 —T12 Q 7T12—1 ’
0 —17929 0 O+ Trog — 1

and set ' : I — R by I' = det oM. Note that A is a fixed point of T if and
only if M - vec(A) = 0. This may be seen using equations (34)-(37) in the
paper. Thus

R={mel:T(x)=0}.

Now notice that I' is a polynomial in 7;;. The gradient of this polynomial can
be explicitly computed and shown not to vanish on R. The implicit function
theorem then applies to show that about any point at which the gradient
does not vanish there is a neighborhood homeomorphic to R3. That R has
measure zero in I follows from the fact that it is the zero-set of a non-zero
polynomial. m

Proof of Proposition 7. Assume 7 € R \ R. It is straightforward to show
that all non-trivial fixed points of the T-map have the property that there
are at least two distinct values among the A;;, and we write

Y = Z anAa(tfn)-
n=0

We would like to know about the possible values obtained by 1;; denote this
set by Y. We proceed as follows: fix ¢ and consider realizations of the process
s, up to time t. Note that each realization identifies a sequence {A, }!,_

—0o0)
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and any such sequence is possible. It is immediate that Y contains infinitely
many points. For example, set

00
2L = Z a”fll + CLkAQ,
n#k

where we are assuming A; # A,. Then 2z, € Y, and i #J =z #z. Itis
somewhat more difficult to show that y; takes on infinity many values with
positive probability. We now turn to this problem.

Let I be the unit interval in R and express all elements of I in base 4.
Specifically, for v € I, write

00 1 k
=3 (5)
k=1

where v, € {0,1,2,3}. Define f: I — R by

Note that Y = f(I).
Lemma 3 The function f is continuous.

Proof: Let ¢ > 0 and ¢ = (1/4)". Let A* = max;{|A;|}. Notice that if
|y — 4| < ¢ then v, = v, for k < n. Thus

F() = FODI<2 ) famA

m=n+1

Note that rearrangement of the sums is legitimate because the series are
absolutely convergent. The right hand side goes to zero as n — oo and so
can be made smaller than €. m

We know that continuous functions send connected sets to connected sets,
and that connected subsets of R are intervals. Noting that f(i/4) # f(j/4)
if A; + Aj shows that Y contains an interval. It follows that there are
uncountably many possible values of ;.

The next step is to note that the Markov process s; induces a probability
measure 4 on the interval I. Specifically, each realization § of the process
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{s:} induces a function ¢(§) which may, in turn be thought of as a realization
of a four state first order Markov process.!* To each o is identified a real
number v € I whose base four expansion has o(t —k+1) as the k' coefficient
vk Now let E be any Borel set in I. Then u(E) = prob(c(§) € E), or, in
words, the measure of the set E is the probability that the realization o($)
is identified with some element of E. Notice that, by construction, if £ C Y
then prob(y, € E) = u(f~*(E)) where

fHUE)={z e |f(z) € E}
denotes the pre-image of E under f.

Lemma 4 If U C I is open then u(U) > 0.
Proof: Let U be open. Then U contain an interval (a, (). Within this

interval it is straightforward to construct an interval J = (&, B) so that there
exists n with &, = 0 and Bm = 0 for m > n, where @,, is the m** component
of the base four expansion of a. We claim that u(J) > 0. To see this,
begin with the simple case that m = 1 and J = (1/4,3/4). Then pu(J) is
the unconditional probability that o(t) € {1,2,3}. Since all transition arrays
have full support, this probability is non-zero. Now consider the general case.

Set A
P = {(51, e 75n)‘5z c {@za T >Bz}}

Now notice that u(J) is the unconditional probability that
(o(t),--,o(t—n)) € P.

This probability is non-zero because the transition arrays have full support.
]

We can now finish the proof of Proposition 7 by showing that with positive
probability y; takes infinitely many values. Suppose not. Then there exists
F C Y such that F' is finite and u(f~'(F)) = 1. Recall there is an interval
Iy in Y. Since F is closed, O = (R\ F') N Iy is open and non-empty. Let
U= f"Y0) c I. By Lemma 1, U is open and by Lemma 2, u(U) > 0.
But U C f7'(R\ F) and pu(f~'(R\ F)) = 0. Thus we reach the required

contradiction. m

14Note that all relevant transition arrays have full support. Thus, given any state, each
state is reachable with positive probability.
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Proof of Proposition 9: To prove stability we must show that when

B<00>1+00d0<—-1-0, 86 <1/4,

Ovec(Ts)

Ovec(A)

than or equal to one. Imposing the restrictions on 7 given in equation (13),
a1—o0

substituting 8 = “5° into (18) and using Mathematica to compute the
1

it follows that the eigenvalues of , given in (18), have real part less

eigenvalues we obtain

1, 2(1—§), 1—M, (1+a)p,

a a

where for notational simplicity we write a = ay. Substituting § = a(1 — (a)
it follows that the non-trivial eigenvalues are

2Ba, a(B(1+a)—1), B(1+a).
Clearly 28a =1 —+/1 — 466 < 1 since 1 — 43 > 0. Next,
a(f(l+a)—1)<1<e fa(l+a)<l4as fa<l,

where the final implication follows from the fact that a € (0,1). Also, we
know fBa < 1 since 28a. Finally, 5 < 0 and 1+ a > 0 implies f(1 + a) < 1.
This establishes stability of 2-SSEs in region A;.

Suppose instead that § and ¢ are in Area B;. To see that in this region
an associated 2-SSE is unstable under learning, note that E-stability would
require

Bl+a)<1 & 2Ba<2-28

& 28-1<+/1—-486

& f-1< -0

But in region B, § > 1 — 3, which provides the required contradiction.m
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Appendix 2

In this section we prove the result described in Section 4 and used in
Section 5.4 that if the derivative of T(f) — 6 has a single root of zero then
the necessary condition for E-stability are also sufficient.

Consider the following system of differential equations:

% = g(a)
do
prl B(a(r))0

with @ € R and B an n X n matrix with entries exhibiting linear dependence
on the value a(7). Assume (5) has a as a locally asymptotically stable fixed
point. A result from (Hirsch and Smale 1974), page 181m shows that there
is a neighborhood U of @ so that a — a exponentially, that is, there exists a
constant K and a < 0 so that if a(0) € U then

la(T) — a| < Ke*"|a(0) — al.
We will prove the following result:

Proposition 11 If B(a) has one zero eigenvalue and each of the remaining
eigenvalues have negative real part then, locally, 0(T) converges to a finite
value.

To prove this proposition, we need the following lemma, which is just a
direct application of the implicit function theorem.

Lemma 5 Let P: R x R""! — R be a collection of degree n polynomials in
x with coefficients b:

P(z,b) = Zbkxk.
k=0
Let f: R — R"™ be CF in each entry. Define F : R> — R by F(xz,y) =

P(x, f(y)). If ‘3—5 # 0, then, locally, the equation F(x,y) = 0 defines = as
an implicit function of y. This function is C*.
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The requirement that %—i # 0 says that the root x of the polynomial
determined by the coefficients f(y) is not repeated.

Proof of Proposition 11: Assume a(0) € U. Write the real Jordan de-
composition of B(a) as Q(a)B(a)Q(a)~' = A(a) with A block diagonal, and
assume the eigenvalues are ordered so that Aji(a) = 0. Change coordinates
to 2 = Q(a)~'6. Because Aj1(a(7)) — 0 and because there is a unique zero
eigenvalue it follows that locally Aj;(a) is real (if it were complex, its con-
jugate would also converge to zero). Therefore, the differential system (6)

becomes
dz

= = (An(a(f)) @ [\) 2,

and we may isolate the differential equation

le
— =A .
dr n(a(r))z
This differential equation is separable, and so may simply be integrated. We

obtain: ‘
21(7) = 2 (0)eli et

Since the remaining eigenvalues of B(a) have real part less than zero, our
result is proved by showing

lim Ay (a(u))du < oo,

=% Jo
To this end, note that since Aji(a) is (locally) an eigenvalue of unit multi-
plicity, it is therefore a non-repeated root of the characteristic polynomial
of the matrix B(a). The above Lemma then says that Ay is C* in a, for
k larger than one (since the entries of B are linear in a). So we may apply
Taylor’s theorem to obtain that
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for some & near a. Therefore

SYRO M)
Au(a(r)] < K ”Tewwam)—ar”+’1}€—,‘\a<o>—arkea'ff
=1 (AT (@) AR (€)
< KZ - ‘ ‘ la(0) —a|™ + ‘ o ‘ a(0) —al* | e
n=1

Since A; is C*, it follows that locally the error term in the Taylor expan-
sion is uniformly bounded. We conclude that there is a constant K so that
|A11a(7))| < Ke*™. Then

/ An(a(u))| du < K / e,
0 0
and the right hand side converges to a finite limit as 7 — oco. m

To apply this proposition to obtain the result claimed, we simply note that
vec(Ty(a, A)) = Bvec(A) with the coefficients of the matrix B linear in the
variable a.
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Figure 2.1: Ergodic 2-SSE, 3 =-3,6=1
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Figure 2.2: Ergodic 2-SSE,  =-1.5, 6 =-0.15
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Figure 3: Ergodic 2-SSE
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Figure 6: Learninga 2 SSE
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